

Winton's Mathematical Methods and Calculation Policy

Year 5 and 6

Addition

Vocabulary

add
 addend
 total
 increase
 more
 plus
 make
 sum
 altogether
 estimate
 number bonds

$256 + 313 =$, $256 + 313 = 569$
 $200 + 50 + 6$ $200 + 50 + 6 = 569$
 $300 + 10 + 3$ $300 + 10 + 3 = 569$

2. Expanded Partitioning Column

$353 + 268 = 621$
 $H \quad T \quad O$
 $300 + 50 + 3$
 $200 + 60 + 8$
 $100 + 10$
 $600 + 20 + 1 = 621$

5. Column: Decimals

$2.31 + 3.8$
 2.31
 3.80
 $\underline{+}$
 6.11

add a place holder

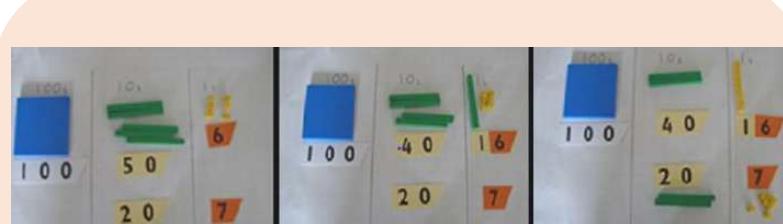
1. Partitioning

$32 + 26 = 58$
 $T: \quad 3 \quad 2 \quad + \quad 2 \quad 6 \quad = \quad 5 \quad 8$
 $U: \quad 3 \quad 0 \quad + \quad 2 \quad 0 \quad = \quad 5 \quad 0$
 $30 + 20 = 50$
 $2 + 6 = 8$

3. Expanded Column

$252 + 476 = 728$
 $H \quad T \quad O$
 $2 \quad 5 \quad 2$
 $4 \quad 7 \quad 6$
 $8 \quad (2+6) \text{ ones}$
 $1 \quad 2 \quad 0 \quad (50+70) \text{ Tens}$
 $6 \quad 0 \quad 0 \quad (200+400) \text{ Hundreds}$

4. Compact column

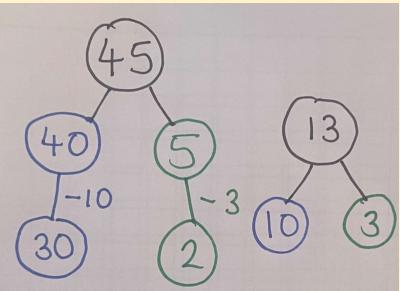

$252 + 476 = 728$
 $789 + 642 = 1431$

Regrouped numbers

Subtraction

Vocabulary

subtract
subtraction
total
decrease
less
minus
amount
estimate
difference
number bonds


2. Expanded Partitioning Column

$$\begin{array}{r} 156 - 27 = 129 \\ \text{H} \quad \text{T} \quad \text{O} \\ \cancel{1}00 \quad \cancel{5}0 \quad 6 \\ \quad \quad 20 \quad 7 \\ \hline 100 + 20 + 9 = 129 \end{array}$$

1. Partitioning

$$45 - 13 = 32$$

A diagram showing the subtraction $45 - 13 = 32$. It uses yellow blocks to represent the numbers. The number 45 is shown as 4 tens and 5 ones. The number 13 is shown as 1 ten and 3 ones. The blocks are visually subtracted to show the result of 32.

3. Expanded Column

$$\begin{array}{r} 1456 \\ - 27 \\ \hline 129 \end{array}$$

9 (16 - 7) ones
 20 (40 - 20) tens
 100 (100 - 0) hundreds

5. Column: Decimals

$$\begin{array}{r} 6.11 - 3.8 \\ \cancel{5}6.11 \\ - 3.80 \\ \hline 2.31 \end{array}$$

add a place holder

4. Compact column

$$\begin{array}{r} 89137 \\ - 452 \\ \hline 485 \end{array}$$

Multiplication

\times	0	1	2	3	4	5	6	7	8	9	10	11	12	13	100	50	25
3											30				300	150	75

Vocabulary

multiply
 multiplier
 multiplicand
 product
 lots of
 inverse
 derive
 factors
 common factors
 multiples
 common multiples
 composite numbers
 prime numbers
 prime factors
 square numbers
 cubed numbers
 convert

2. Expanded Column

$$\begin{array}{r}
 402 \\
 \times 4 \\
 \hline
 160 \quad (4 \times 40) \\
 168 \quad (4 \times 2) \\
 \hline
 168
 \end{array}$$

$$\begin{array}{r}
 36 \times 15 \\
 \begin{array}{r}
 36 \\
 \times 15 \\
 \hline
 18 \quad (4 \times 2) \\
 30 \quad (5 \times 6) \\
 150 \quad (5 \times 30) \\
 60 \quad (10 \times 6) \\
 300 \quad (10 \times 30) \\
 \hline
 540
 \end{array}
 \end{array}$$

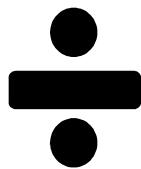
1. Grid Method

$$\begin{array}{r}
 3.2 \times 2.4 = 7.68 \\
 \begin{array}{r}
 3.2 \\
 \times 2.4 \\
 \hline
 12 \quad 4 \\
 36 \quad 12 \\
 \hline
 0.8 \quad 0.8 \\
 0.2 \quad 4 \\
 \hline
 7.68
 \end{array}
 \end{array}$$

$$\begin{array}{r}
 \times 40 \quad 2 \\
 4 \quad 160 \quad 8 \\
 \hline
 42 \times 4 = 168 \\
 160 + 8 = 168
 \end{array}$$

4. Short column: Decimals

$$\begin{array}{r}
 3.9 \times 30 \\
 \begin{array}{r}
 \downarrow \times 10 \\
 3.9 \\
 \times 30 \\
 \hline
 00 \\
 1170 \div 10 = 117
 \end{array}
 \end{array}$$


Use adjustment strategy

3. Short column

$$\begin{array}{r}
 362 \times 15 \\
 \begin{array}{r}
 362 \\
 \times 15 \\
 \hline
 1810 \\
 3620 \\
 \hline
 5430
 \end{array}
 \end{array}
 \quad
 \begin{array}{r}
 367 \times 4 = 1468 \\
 \begin{array}{r}
 367 \\
 \times 4 \\
 \hline
 1468
 \end{array}
 \end{array}$$

'Be a hero, add a 0'

Division

Vocabulary

divisor
 dividend
 quotient
 share
 equal
 groups of
 inverse
 derive
 factors
 common factors
 multiples
 prime factors
 common multiples
 composite numbers
 prime numbers
 convert

2. Short (Bus Stop) with remainders

$$823 \div 4 = 205 \text{ r}^3$$

$$4 \overline{)823}$$

Using known facts

$$27 \div 4 = 6 \text{ R } 3$$

Quotient: 6
Divisor: 4
Dividend: 27

$$205 \cdot 75$$

$$4 \overline{)823 \cdot 300}$$

Formal with decimal point and place holders

1. Short (Bus Stop)

179	$8 \div 5 = 1 \text{ r}^3$
58395	$39 \div 5 = 7 \text{ r}^4$
	$45 \div 5 = 9$

3. Short (Bus Stop): 2 digit divisors

$$3850 \div 25$$

$$900 \div 25 = 36$$

$$25 \overline{)900 \text{ r} 15}$$

$$25$$

$$50$$

$$75$$

$$100$$

$$125$$

$$150$$

$$175$$

4. Short (Bus Stop): Decimals

$$12.9 \div 3 = 4.3$$

$$3 \overline{)12.9}$$

& use of
adjustment
strategy

$$12.9 \div 3 = 4.3$$

$$\times 10 \quad \text{---} \quad 129 \div 3 = 43$$

$$3 \overline{)129}$$

$$\div 10 \quad \text{---} \quad 0.43$$

Fractions +

Vocabulary

numerator
denominator
unit fraction
non-unit fraction
equivalence
equivalent
proper fractions
improper fractions
mixed numbers
simplify
tenths
hundredths
percentage
ratio
proportion
number of parts

2. Different denominators - finding common multiples (change one)

$$\frac{1}{5} + \frac{2}{10} = \frac{2}{5}$$

$\times 2$

$$\frac{2}{10} + \frac{2}{10} = \frac{4}{10} = \frac{2}{5}$$

$\div 2$

4. Mixed numbers

$$\begin{array}{r}
 \underline{1} \ \underline{\frac{2}{4}} + \underline{3} \ \underline{\frac{1}{8}} = 4 \ \underline{\frac{5}{8}} \\
 \begin{array}{r}
 1 + 3 = 4 \\
 \frac{2}{4} + \frac{1}{8} \\
 \downarrow \quad \downarrow \\
 \frac{4}{8} + \frac{1}{8} = \frac{5}{8} \\
 \end{array}
 \end{array}$$

I. Common (same) denominator

$$\frac{1}{5} + \frac{2}{5} = \frac{3}{5}$$

3. Different denominators - finding common multiples (change both)

$$\begin{array}{r}
 \begin{array}{r}
 6 & 9 \\
 12 & 18 \times 2 \\
 18 & \times 3
 \end{array}
 \begin{array}{r}
 3 \\
 6
 \end{array}
 + \begin{array}{r}
 5 \\
 9
 \end{array} \times 2 = 1 \frac{1}{18}
 \end{array}$$

$$\begin{array}{r}
 24 \\
 \times 3
 \end{array}
 \begin{array}{r}
 9 \\
 \downarrow
 \end{array}
 + \begin{array}{r}
 10 \\
 18
 \end{array} \times 2 = 1 \frac{1}{18}$$

Fractions

Vocabulary

numerator
denominator
unit fraction
non-unit fraction
equivalence
equivalent
proper fractions
improper fractions
mixed numbers
simplify
tenths
hundredths
percentage
ratio
proportion
number of parts

2. Different denominators - finding common multiples (change one)

$$\begin{array}{r} 2 \\ \times 2 \\ \hline 4 \end{array} \quad \begin{array}{r} 1 \\ \hline 10 \end{array} \quad \begin{array}{r} = \\ \hline \hline 3 \\ 10 \end{array}$$

4. Mixed numbers

$$1\frac{2}{6} - \frac{3}{6} =$$

$\left(\frac{6}{6} + \frac{2}{6}\right) \downarrow$

$$\frac{8}{6} - \frac{3}{6} = \frac{5}{6}$$

I. Common (same) denominator

$$\frac{4}{5} - \frac{2}{5} = \frac{2}{5}$$

\rightarrow

1/1	1/1	2/2	2/2	
-----	-----	-----	-----	--

3. Different denominators - finding common multiples (change both)

$$\begin{array}{r}
 69 \\
 12 \text{ } (18) \times 2 \\
 18 \\
 \hline
 24 \text{ } (18) \times 2 \\
 18
 \end{array}
 \begin{array}{r}
 5 \\
 9 \\
 \hline
 10 \\
 18
 \end{array}
 \begin{array}{r}
 3 \\
 6 \\
 \hline
 9 \\
 18
 \end{array}
 \begin{array}{r}
 1 \\
 18 \\
 \hline
 18
 \end{array}$$

Fractions

Vocabulary

numerator
denominator
unit fraction
non-unit fraction
equivalence
equivalent
proper fractions
improper fractions
mixed numbers
simplify
tenths
hundredths
percentage
ratio
proportion
number of parts

2. Multiplying fractions by whole numbers

$$\begin{array}{r}
 \underline{3} \\
 \underline{5} \\
 \downarrow \\
 \underline{\underline{3}} \\
 \underline{5}
 \end{array}
 \times
 \begin{array}{r}
 2 \\
 \downarrow \\
 \underline{\underline{2}} \\
 \underline{1}
 \end{array}
 = \frac{6}{5} = 1 \frac{1}{5}$$

$\frac{5}{5}$ $\frac{1}{5}$
 " "

111	111	111	111	111	111	111	111	111
1					$\frac{1}{5}$			

I. Multiplying fractions

$$\begin{array}{r}
 \begin{array}{r}
 \begin{array}{r}
 2 \xrightarrow{x} 3 = 6 \\
 \hline
 4 \xrightarrow{x} 6 \quad 24
 \end{array}
 \end{array}
 \end{array}$$

3. Multiplying mixed numbers by whole numbers

$$2 \frac{1}{3} \times 4 = 9 \frac{1}{3}$$

2 $\frac{1}{3}$

$$2 \times 4 = 8$$

$$\frac{1}{3} \times \frac{4}{1} = \frac{4}{3} = 1 \frac{1}{3}$$

$\frac{3}{3}$ $\frac{1}{3}$
" 1

$$8 + 1 \frac{1}{3} = 9 \frac{1}{3}$$

Fractions

Vocabulary

numerator
 denominator
 unit fraction
 non-unit fraction
 equivalence
 equivalent
 proper fractions
 improper fractions
 mixed numbers
 simplify
 tenths
 hundredths
 percentage
 ratio
 proportion
 number of parts

2. Dividing fractions by whole numbers

$$\frac{1}{3} \div 2 = \frac{1}{3} \div \frac{2}{1} = \frac{1}{6}$$

$\downarrow \quad \downarrow \quad \downarrow$

$$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$

1. Keep

2. Change

3. Flip

1. Dividing fractions by fractions

$$\frac{2}{5} \div \frac{2}{3} = \frac{6}{10} = \frac{3}{5}$$

$\downarrow \quad \downarrow \quad \downarrow$

Keep, change, flip

$$\frac{2}{5} \times \frac{3}{2} = \frac{6}{10}$$

$$\frac{6}{10} \div 2 = \frac{3}{5}$$

$\frac{\div 2}{\div 2}$

Simplifying answers if possible

3. Dividing fractions by whole numbers and simplifying the answer

$$4 \div \frac{2}{3} = \frac{4}{1} \div \frac{2}{3} = \frac{6}{2}$$

$\downarrow \quad \downarrow \quad \downarrow$

$$\frac{4}{1} \times \frac{3}{2} = \frac{12}{2} = 6$$

Answers that can be converted to a whole number, must be converted.

Number Facts

$$8 \times 10 = 80$$

$$80 \times 10 = 800$$

$$8 \times 100 = 800$$

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

$\times 100$ (left arrow) $\times 10$ (up arrow) $\times 10$ (up arrow)

$$8 \times 10 \times 10 = 8 \times 100$$

$$1,200 \div 10 = 120$$

$$120 \div 10 = 12$$

$$1,200 \div 100 = 12$$

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

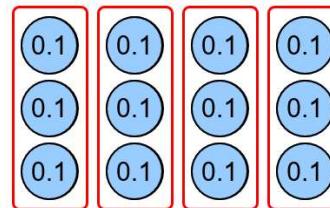
$\div 100$ (left arrow) $\div 10$ (up arrow) $\div 10$ (up arrow)

Multiplying and Dividing by 10, 100 and 1000

10 000	1000	100	10	1	\bullet $\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
					\bullet		

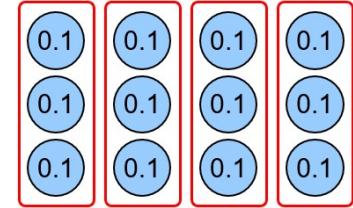
Multiplying

$\times 10$
 $\times 100$
 $\times 1000$


digits move LEFT 1 space
 digits move LEFT 2 spaces
 digits move LEFT 3 spaces

Dividing

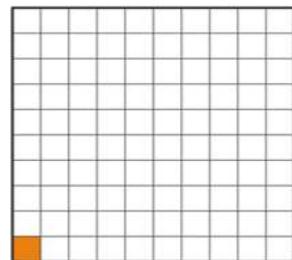
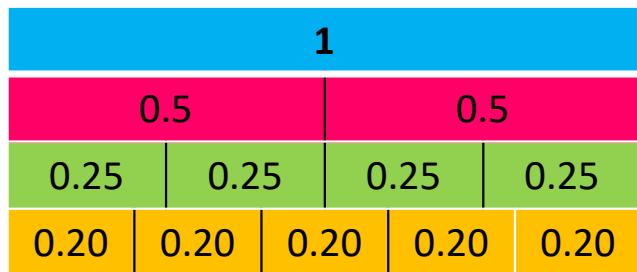
$\div 10$
 $\div 100$
 $\div 1000$


digits move RIGHT 1 space
 digits move RIGHT 2 spaces
 digits move RIGHT 3 spaces

$$4 \times 3 = 12$$

$$4 \times 3 \text{ tenths} = 12 \text{ tenths}$$

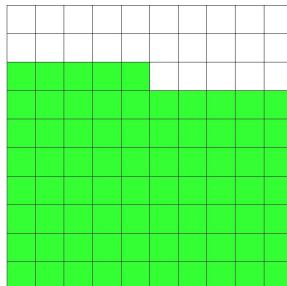
$$4 \times 0.3 = 1.2$$

$$12 \div 4 = 3$$

$$12 \text{ tenths} \div 4 = 3 \text{ tenths}$$

$$1.2 \div 4 = 0.3$$


Number Facts

$$1\% = \frac{1}{100} = 0.1$$

$$75\% = \frac{75}{100} = \frac{3}{4}$$

$\div 25$

$$75\% = \frac{75}{100} = 0.75$$

$\frac{1}{1}$	one	1.00	100%			1
$\frac{1}{2}$	one-half	0.50	50%			$\frac{1}{2}$
$\frac{1}{3}$	one-third	0.333	33.3%			$\frac{1}{3}$
$\frac{1}{4}$	one-fourth	0.25	25%			$\frac{1}{4}$
$\frac{1}{5}$	one-fifth	0.20	20%			$\frac{1}{5}$
$\frac{1}{6}$	one-sixth	0.166	16.6%			$\frac{1}{6}$
$\frac{1}{8}$	one-eighth	0.125	12.5%			$\frac{1}{8}$
$\frac{1}{10}$	one-tenth	0.10	10%			$\frac{1}{10}$

18
6 6 6

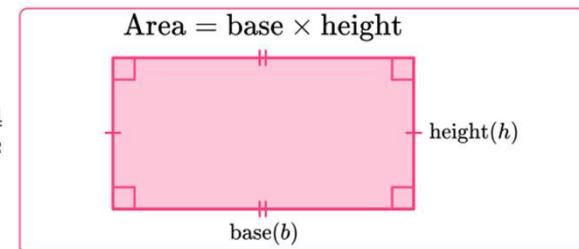
18
3 3 3 3 3 3

$$6 \times 3 = 18$$

$$3 \times 6 = 18$$

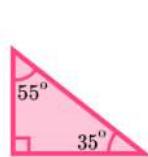
$$18 \div 6 = 3$$

$$18 \div 3 = 6$$

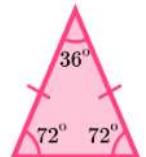

$$\frac{1}{6} \text{ of } 18 = 3$$

$$\frac{1}{3} \text{ of } 18 = 6$$

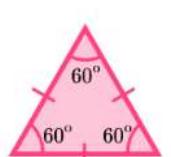
The area of a rectangle is the amount of space inside the rectangle.

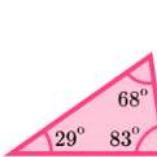


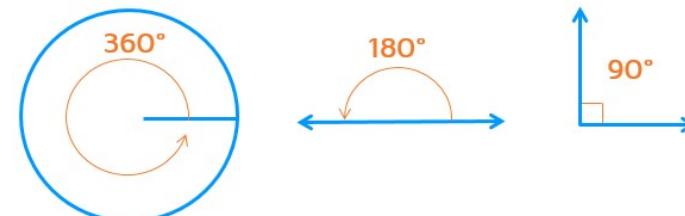
$$\text{Area} = 7 \times 4 = 28 \text{m}^2$$



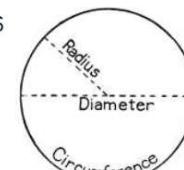
Angles in a triangle refers to the sum (total) of the angles at each vertex in a triangle. The sum of the interior angles of a triangle is **180°**.


E.g.

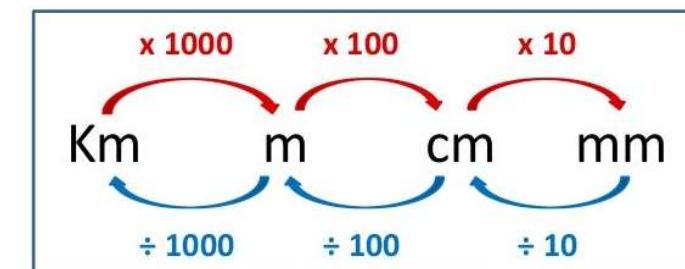
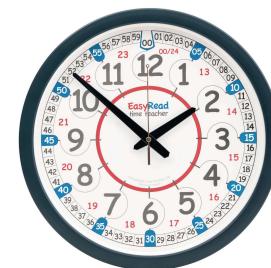

Right angled triangle
One right angle
 $90+55+35 = 180^\circ$


Isosceles triangle
Two equal sides & angles
 $72+72+36 = 180^\circ$

Equilateral triangle
Three equal sides & angles
 $60+60+60 = 180^\circ$


Scalene triangle
All sides & angles different
 $83+68+29 = 180^\circ$

$$360 \div 2 = 180$$



$$\frac{1}{2} \text{ of } 360 = 180$$

1 day = 24 hours
1 hour = 60 minutes
1 minute = 60 seconds

$$\text{Diameter} = 2 \times \text{radius}$$

$$\text{Radius} = \frac{1}{2} \text{ diameter}$$

$$5\text{km} = ?\text{m} \quad \text{Need to } \times 1000$$

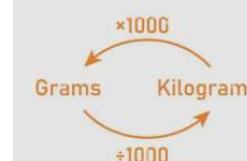
$$120\text{cm} = ?\text{m} \quad \text{Need to } \div 100$$

$$5 \times 1000 = 5000\text{m} \quad \checkmark$$

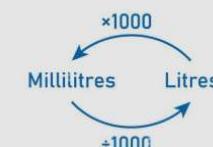
$$120 \div 100 = 1.2\text{m} \quad \checkmark$$

Time

$$1\text{cm} = 10\text{mm}$$

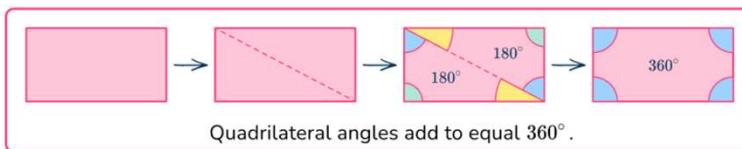

$$1\text{m} = 100\text{cm}$$

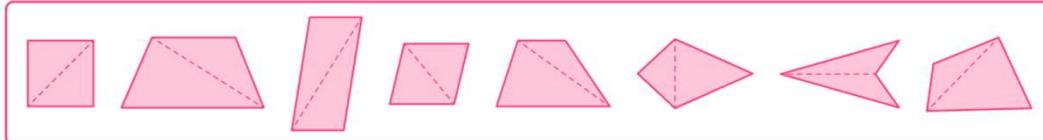
$$1\text{km} = 1000\text{m}$$


$$1\text{kg} = 1000\text{g}$$

$$1\text{l} = 1000\text{ml}$$

Mass


Volume


Quadrilateral angles are the four angles that occur at each vertex within a four-sided shape; these angles are called **interior angles of a quadrilateral**.

The sum of the interior angles of a quadrilateral is **360°**.

You can prove this using the angle sum of a triangle.

This is the same for all types of quadrilaterals:

