
Find one more
or two more of a
given number

Starting at the bigger number and counting on	$12+5=17$ Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$6+2=8$ $12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$\begin{aligned} & 5+12=17 \\ & 26+8=34 \end{aligned}$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 Make ten and then...	$9+3=12$ $6+5=10$ $9+5=14$	$3+9=$ $9+5=14$ 14 $6+9=$ the addition can be calculated from a known fact. $6+10$ and then take away 1 . Adjust It	$\begin{aligned} & 9+3=12 \\ & 9+1=10 \\ & 10+2=12 \end{aligned}$

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} 4+7+6 & =17 \\ \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. $44+15=59$	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. $32+23=$	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$

Find one less or two less of a given number	$\sqrt[2]{2}+\sqrt{1}$		$\begin{aligned} & 5-1=4 \\ & 7-2=5 \end{aligned}$
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 6-2=4 \\ & 15-3=12 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	$13-4=9$ Put 13 in your head, count back 4. What number are you at? $57-23=34$ Put 57 in your head, count back 2 tens and then 3 ones.

Find the difference

	If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	6 $?$ 2	Move to using numbers within the part part whole model.
Make 10	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. 15-8 = the subtraction can be calculated from a known fact. $15-5=10$ and then take away 3 more. Make Ten and Then...	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. $54-22=32$ Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{aligned} & 47-24=23 \\ & 407 \\ & -\frac{204}{203}=23 \end{aligned}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.

Column method with regrouping cont'd	Make the larger counters from 4 easily? I n tens for ten ones subtract my ones Now look at the easily? I need to tens.		he place value e away 8 tens e hundred for ten	When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Counting in multiples		Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups.		Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. \square $4 d$	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

			Mov e.g. x 3 	$\begin{aligned} & \text { to decin } \\ & 9 \times 3 \\ & \hline 48 \\ & \hline \\ & \hline \end{aligned}$	$$	id. 0.03 0.15	16 $+\quad 24156$ 12 +2.7 14.7 30.00 +1.00 0.15 31.15
Column multiplicat ion	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start child colu If it solv $\begin{array}{r} 32 \\ \times \quad 24 \\ \hline 8 \\ 120 \\ 40 \\ 600 \\ \hline 768 \end{array}$	with long about ns. ps, chil next to $\begin{aligned} & (4 \times 2) \\ & (4 \times 30) \\ & (20 \times 2) \\ & (20 \times 30 \end{aligned}$	ultipli ing up n can eir an	heir rite er.	inding the bers clearly in what they are

(

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Sharing objects into groups \& I have 10 cubes, can you share them equally in 2 groups?
$$
10 \div 2=5
$$ \& Children use pictures or shapes to share quantities. They can draw the number of groups they are spliting into first. \& Share 9 buns between three people.
$$
9 \div 3=3
$$

\hline Division as grouping \& \begin{tabular}{l}
$$
10 \div 5=2
$$

Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.
$$
96 \div 3=32
$$

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

$$
15 \div 3=5
$$

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

How many 5 s in 20 ?

How many 4 s in 20 ?

$20 \div 5=$?

$20 \div 4=$?

$5 \times ?=20$

$4 \times ?=20$

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Division within arrays	number sentences that can be created. Eg $15 \div 3=5 \quad 5 \times 3=15$ $15 \div 5=3 \quad 3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a

remainder \begin{tabular}{l}
$14 \div 3=$

Divide objects between groups and

see how much is left over

Complete written divisions

and show the remainder

using r.
\end{tabular}

